Counting rational points on quartic del Pezzo surfaces with a rational conic
نویسندگان
چکیده
منابع مشابه
Counting Rational Points on Del Pezzo Surfaces with a Conic Bundle Structure
For any number field k, upper bounds are established for the number of k-rational points of bounded height on non-singular del Pezzo surfaces defined over k, which are equipped with suitable conic bundle structures over k.
متن کاملRational Points on Certain Del Pezzo Surfaces of Degree One
Let f(z) = z +az + bz + cz+ d ∈ Z[z] and let us consider a del Pezzo surface of degree one given by the equation Ef : x 2 − y − f(z) = 0. In this note we prove that if the set of rational points on the curve Ea, b : Y 2 = X + 135(2a − 15)X − 1350(5a + 2b − 26) is infinite, then the set of rational points on the surface Ef is dense in the Zariski topology.
متن کاملRational points on diagonal quartic surfaces
We searched up to height 107 for rational points on diagonal quartic surfaces. The computations fill several gaps in earlier lists computed by Pinch, Swinnerton-Dyer, and Bright.
متن کاملCounting Rational Points on K3 Surfaces
For any algebraic variety X defined over a number field K, and height functionHD onX corresponding to an ample divisorD, one can define the counting functionNX,D(B) = #{P ∈ X(K) | HD(P ) ≤ B}. In this paper, we calculate the counting function for hyperelliptic K3 surfaces X which admit a generically two-to-one cover of P1 × P1 branched over a singular curve. In particular, we effectively constr...
متن کاملINHOMOGENEOUS CUBIC CONGRUENCES AND RATIONAL POINTS ON DEL PEZZO SURFACES by
— For given non-zero integers a, b, q we investigate the density of solutions (x, y) ∈ Z to the binary cubic congruence ax + by ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over Q.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2018
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-018-1716-6